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turbulent jet at Mach 0.9
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The mechanisms of sound generation in a Mach 0.9, Reynolds number 3600 turbulent
jet are investigated by direct numerical simulation. Details of the numerical method
are briefly outlined and results are validated against an experiment at the same flow
conditions (Stromberg, McLaughlin & Troutt 1980). Lighthill’s theory is used to define
a nominal acoustic source in the jet, and a numerical solution of Lighthill’s equation
is compared to the simulation to verify the computational procedures. The acoustic
source is Fourier transformed in the axial coordinate and time and then filtered in
order to identify and separate components capable of radiating to the far field. This
procedure indicates that the peak radiating component of the source is coincident
with neither the peak of the full unfiltered source nor that of the turbulent kinetic
energy. The phase velocities of significant components range from approximately 5%
to 50% of the ambient sound speed which calls into question the commonly made
assumption that the noise sources convect at a single velocity. Space–time correlations
demonstrate that the sources are not acoustically compact in the streamwise direction
and that the portion of the source that radiates at angles greater than 45◦ is stationary.
Filtering non-radiating wavenumber components of the source at single frequencies
reveals that a simple modulated wave forms for the source, as might be predicted by
linear stability analysis. At small angles from the jet axis the noise from these modes
is highly directional, better described by an exponential than a standard Doppler
factor.

1. Introduction
Although a theoretical representation of the acoustic source in turbulent flow has

existed for nearly 50 years (Lighthill 1952), precise measurements of any theoretical
source in an actual turbulent jet has been impossible owing to experimental difficulties.
The complexity of the acoustic source, typically defined statistically as a space–time
correlation of fluctuating quantities, is the principal factor responsible for these
difficulties. Confounding things further is the well-known fact that only the portion
of the source with a supersonic phase velocity relative to the ambient flow will radiate
noise to the acoustic far field. For jets whose dominant turbulent eddies convect
subsonically, this means that only a very small portion of the acoustic sources actually
radiate. This makes the noise difficult to predict and presents additional challenges
to experimentalists attempting to educe acoustic sources, as it is insufficient to simply
identify energetic structures in the jet. Essentially, it is the evolution of the energetic
turbulent structures as they convect that is important, which makes the effective
source time dependent in a way that compounds measurement difficulties.

Computing technology and numerical methods have recently reached a point where
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turbulent jet noise can be computed from first principles and thus, provided that
such simulations are properly validated, provide a characterization of the acoustic
sources that has previously been lacking. The current study takes this approach.
Although such simulations are limited to low Reynolds numbers, experimental data
at Reynolds number 3600 are available (Stromberg, McLaughlin & Troutt 1980) and
the jet computed at this Reynolds number is in excellent agreement with the data. The
analysis of the noise sources in the simulated jet constitutes the principle contribution
of this paper. Particular attention will be paid to isolating space–time Fourier modes
that are capable of radiating to the acoustic far field.

In pursuing a definition for the noise sources in a jet, it often seems that a
balance must be struck between rigour and ease of application. Consider, for example,
Lighthill’s (1952) well-known manipulation of the flow equations into a simple wave
operator on density responsible for propagation and a group of terms he assumes to
be analogous to an acoustic source,

∂2ρ

∂t2
− a2

∞
∂2ρ

∂xj∂xj︸ ︷︷ ︸
sound propagation

=
∂2Tij

∂xi∂xj︸ ︷︷ ︸
‘source’

, (1.1)

where ρ is the density, a∞ is the ambient speed of sound and Tij is the Lighthill stress
tensor. This decomposition is known to be non-unique and is in some sense incorrect
because flow–acoustic interactions are not distinguished from true acoustic sources.
Nevertheless, considerable effort has gone into modelling the Lighthill source for jet
noise prediction, and with some success (see the review by Lilley 1991). More intricate
formulations, such as that of Lilley (1974) (see also Goldstein 1976), extend Lighthill’s
acoustic analogy approach by using a wave operator that accounts explicitly for some
flow–acoustic interactions to provide what is perhaps a more complete representation
of the mechanism. However this is done at the price of simplicity (Lilley 1991;
Goldstein 1976), and is arguably not beneficial (Bailly, Lafon & Candel 1994) though
a recent predictive approach does appear to benefit from making the distinction
(Khavaran 1999). However, Lilley’s equation also becomes ambiguous when it is
linearized, as it must be for it to be interpreted. If this is done in such a way that
the analogy remains exact, terms are shifted from the propagation operator into the
source, which once again blurs their distinction.

A recent quantitative application of the linearized Lilley’s equation to a two-
dimensional mixing layer demonstrated some of the difficulties in using that equation
to compute sources from simulation data (Colonius, Lele & Moin 1997). A conclusion
from that study was that, depending upon how the analogy is formulated, the
prediction is either sensitive to the parallel mean flow about which the equation is
linearized, or the source is composed of very large nearly cancelling components that
make numerical evaluation unreliable and interpretation difficult.

In this study flow–acoustic interaction is not considered explicitly and the term
‘source’ is meant in the sense of Lighthill’s source. Dynamics that do not satisfy
the classic homogeneous-medium second-order wave equation are grouped into this
nominal source. For this reason we must be cautious in interpreting the results, as
studies of multipole sources in parallel shear flow suggest that there are important
flow–acoustic interactions in jets (Goldstein 1975, 1982). On the other hand, pre-
dicting the Lighthill source is equivalent to predicting the noise, and since there is
currently no satisfactory quantitative model for jet noise, working with the Lighthill
source may still turn out to be the best approach. We should also note that several
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detailed theoretical criticisms of the analogy approach in general have appeared
over the years (Doak 1972; Crow 1970; Fedorchenko 2000). However, since a more
attractive alternative has not been offered, we will stick with Lighthill’s theory in this
study.

Increased insight into the mechanisms responsible for the creation of jet noise,
especially at near-sonic jet velocities where noise is currently of concern for civilian
aircraft, will aid predictive modelling efforts, and show the limits of different modelling
approaches. The crudest of these use dimensional scalings derived from acoustic
analogy expressions, the most famous of which is Lighthill’s U8 law for radiated
intensity (Lighthill 1952). A more refined technique is to use acoustic analogies
in conjunction with the Reynolds-averaged Navier–Stokes equations, with standard
turbulence closures, for the mean flow. In this case, unsteadiness is modelled with
empirical correlations derived from existing experimental data to predict the sound
(Khavaran, Krejsa & Kim 1994; Khavaran 1999; Bailly et al. 1994, 1997). A drawback
of this approach is that considerable approximations are required to express the
noise sources in terms of turbulent kinetic energy k, for example, which would be
predicted by the same k–ε turbulence model that solved the flow. Because of the
empiricism involved, it is not clear how reliable such models will be away from the
conditions for which they were designed. Solving unsteady equations with turbulence
models to reduce the expense of solution promises to increase the flexibility of
these models (Bastin, Lafon & Candel 1997), as do approaches built on parabolized
stability equations (e.g. Yen & Messersmith 1999). A similar approach currently under
development is large-eddy simulation for jet noise (Choi et al. 1999; Bogey, Bailly
& Juvé 2000; Boersma & Lele 1999). Better understanding of the noise sources and
in particular the capability to compute them directly will prove useful in validating
the theoretical basis of these approaches as well as expose any of their inherent
limitations.

Several researchers have assumed that the acoustic sources in subsonic jets are
similar to instability waves that initially grow and then stabilize and decay as the
jet’s shear layers thicken. Crow (1972) and Ffowcs Williams & Kempton (1978) have
built heuristic models for the sources of jet noise around this reasoning and Huerre
& Crighton (1983) used a slowly spreading linear instability analysis to predict its
form. These sources are not acoustically compact in the traditional sense, and so
while they are nearly self-cancelling as quadrupoles, they are not strictly quadrupoles.
Their exponential directivity, as observed experimentally in forced jets by Laufer &
Yen (1983), precludes any multipole representation (Crighton & Huerre 1990). A
contribution of this work is to show that the Lighthill source has a similar structure
in an unforced jet, which is important for jet noise theories which assume that the
sources are convecting quadrupoles (Lighthill 1954; Ffowcs Williams 1963). With
regard to the commonly made assumptions of source compactness and multipole
representation, Lighthill (1963) points out that these are low Mach number theories
that are commonly extended beyond their range of strict applicability to near-sonic
flows where there is more practical interest. The present results provide insight into
how this extension begins to fail in a turbulent jet.

The paper is organized as follows. The flow parameters and necessary aspects of
the numerical method are introduced in § 2 and the numerical results are validated in
§ 3 and § 4 which respectively address the turbulent jet flow and the radiated sound. In
§ 5, which constitutes the bulk of the paper, the Lighthill acoustic source is computed
and analysed.
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2. Preliminaries
2.1. Flow parameters

The subject of the present study is a Mach 0.9 round jet that exhausts into a quiescent
infinite medium. This jet has a constant stagnation temperature (Tj/T∞ = 0.86) and
a Reynolds number Re = ρjUjDj/µj = 3600. The subscript ( )j denotes a nozzle
exit condition, so ρj, Uj, Dj and µj are, respectively, the density, velocity, diameter
and viscosity of the jet at the nozzle. These parameters and geometry match an
experimental study conducted by Stromberg et al. (1980) and results will be compared
to their data whenever possible.

Because this Reynolds number is well below that of jet engines, we should sum-
marize the expected quantitative and even qualitative differences from high Reynolds
number jet noise before proceeding. One is that we expect the noise to be more
tonal than at higher Reynolds numbers because of the smaller range of energetic
turbulence scales. This difference is particularly important because at jet engine scale
these missing frequencies receive a significant weighting when adjusted for human
annoyance. Also, the initial shear layers of the jet will also be laminar and therefore
nearly silent relative to the turbulent flow downstream, which is certainly not the case
at higher Reynolds numbers, so a potentially important portion of the source at high
Reynolds number is missing. Nevertheless, since an accurate predictive capability for
jet noise continues to elude modellers, it is hoped that some insights gleaned at this
low Reynolds number might aid understanding and prediction of noise from jets at
practical Reynolds numbers even though direct extrapolation of the present data may
not be possible.

2.2. Governing equations and numerical methods

The compressible flow equations were formulated in cylindrical coordinates, as in
Freund, Moin & Lele (1997), and solved numerically without modelling approxima-
tions. Radial and axial derivatives were computed with sixth-order-accurate compact
finite differences (Lele 1992) and azimuthal derivatives were computed with Fourier
spectral methods. A fourth-order Runge–Kutta scheme was used to advance the so-
lution in time. The same basic algorithm was used by Freund et al. (1997) to study
compressible turbulence in an annular mixing layer (see also Freund, Lele & Moin
2000) and the reader is referred there for its complete documentation. For the com-
putation presented in this paper, the equations were discretized with 640× 250× 160
mesh points in the axial, radial, and azimuthal directions respectively. The mesh was
compressed radially with minimum spacing ∆r = 0.018ro at radial position r = 0 and
axially with minimal spacing ∆x = 0.049ro at axial position x ≈ 20ro, where ro is the
jet nozzle radius. The mesh spacing changed by less than 1% per mesh point. The
azimuthal θ-mesh was, of course, uniform.

The region in which the flow equations were solved will be referred to as the
physical portion of the computational domain. This extended 33ro in the streamwise
direction and 8ro in the radial direction. Beyond this region in all directions, but on
the same contiguous numerical mesh, dissipative terms were added to the equations
in order to approximate anechoic boundary conditions. These boundary zones were
not physical in the sense that no effort was made to imitate any physical mechanism
in detail; their purpose was simply to approximate a radiation condition. In the
downstream and radial directions the mesh was stretched and extended by 17ro and
12ro respectively beyond the physical domain. To damp disturbances in this zone,
the solution was filtered using techniques similar to those of Colonius, Lele & Moin
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∆ per timestep min max

A 0.0001 0.01 0.07
St 0.00085 0.1 0.7
φ 0.00085 – –
ψ 0.00085 – –

Table 1. Parameters for inflow randomization.

(1993) so that all fluctuations were reduced to a negligible level by the time they
reached the actual boundaries of the computational domain, where a characteristic
boundary condition was applied. Details of this procedure are discussed by Freund
(1999b).

Since it was deemed unnecessary to realistically simulate the nozzle in the present
computations, an inflow boundary zone of width ro was used to generate appropriate
nozzle conditions with a technique similar to that used by Freund & Moin (2000).
Writing the flow equations in the compact form N (q) = 0, where q is a vector of the
flow variables, an additional term was added in the inflow boundary zone to drive
the solution toward the desired nozzle exit conditions, N (q) = −σ(q − qtarget), where
σ was a large positive constant. The specified nozzle condition was a thin laminar
annular shear layer with

v̄x target

Uj

=
1

2

[
1− tanh

[
b(θ, t)

(
r

ro
− ro

r

)]]
. (2.1)

The factor b in (2.1), is a thickness parameter with a mean of 12.5, was varied in
θ and t (time) to add small-amplitude random perturbations to seed the instabilities
and turbulence. This excitation prevents auto-excitation of the jet by an unphysical
feedback mechanism involving spurious numerical modes. Without this small exci-
tation the disturbances did not saturate until further downstream after a significant
distance of laminar spreading of the shear layers. Unfortunately, the disturbances at
a laminar flowing nozzle exit are difficult to measure and are not available for the
Stromberg et al. (1980) data, so the thickness factor b(θ, t) was modelled in an at hoc
fashion as

b(θ, t) = 12.5 +

2∑
m=0

1∑
n=0

Anm cos

(
StnmUj

D
t+ φnm

)
cos (mθ + ψnm) , (2.2)

where the nm subscripted terms were slowly varied in a random-walk fashion. At
each simulation timestep, ∆t = 0.0085ro/a∞, they were each increased or decreased
by a small amount given in table 1. A pseudo-random-number generator determined
the 1-in-20 chance at each timestep that the variation would change from increase to
decreasing or vice versa. Limits on the variation are also given in table 1. In the 50 000
timesteps that were used to solve the flow (after a stationary state was achieved), all
coefficients wandered significantly over their permitted ranges. The jet development
was not found to be highly sensitive to the particular form of this low-amplitude
random forcing at the nozzle, and white noise added at the nozzle produced similar
results for the turbulence but also produced significant spurious noise. The present
approach was chosen because such disturbances are approximately solenoidal and
therefore quiet.
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Figure 1. Mach number profiles from: e, Stromberg et al. (1980); ———, present simulation.
(a) x/ro = 2; (b) x/ro = 10; (c) x/ro = 20; (d) jet axis (r = 0).

3. The turbulent jet flow
3.1. Mean flow

Mean Mach number profiles are shown in figure 1. Near the nozzle the profile
has a typical top-hat shape (figure 1a) which then broadens as the flow develops
downstream (figures 1b, c). Figure 1(d) shows the development of the Mach number
on the jet axis. The mean potential core length is approximately x = 14ro.

Also shown in figure 1 are data from the Stromberg et al. (1980) study. For
comparison, the axial origin, x = 0, of the simulation has been placed 2 jet radii
into the physical portion of the computation, or, equivalently, 3ro from the edge
of the computational domain (see §2.2). The offset of 2ro was chosen to match the
experiment at the first available measurement location, x = 2ro. Given that the correct
exit momentum thickness and disturbances levels are unknown, there is no reason
to believe that the quality of the data would benefit from performing the numerous
expensive iterations that would be necessary to remove this offset. Matching the
data at the first reported measurement station is the best that can be done under
these circumstances. In a sense, the region of the computation between the inflow
computational boundary and the first experimental measurement location can be
thought of as an artificial zone designed to match the experiment at x = 2ro and the
data in this zone disregarded. However, since the flow equations were solved in this
region, we treat it as realistic in this study. A similar justification can be made for
not including a physically realistic nozzle in the simulation. All subsequent data will
be presented with x = 0 corresponding to the nozzle location in Stromberg et al.’s
experiment.

Given this minor adjustment, the agreement with the data is excellent. Differences
are of only a few percent except near the outer edges of the jet where they increase
significantly. It is believed that this disagreement is a consequence of using a Pitot
probe to measure velocity where the mean flow was too small. In such circumstances,
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Figure 2. (a) The half-velocity radius: ———, of the jet with a visual linear fit and −−−−, to
identify the virtual origin of the jet (xo = 4.15ro). A straight reference line (· · · · · ·) is also shown.
(b) Centreline velocity: ———, the present simulation; −−−−, equation (3.1) with Bu = 5.8 (Hussein
et al. 1994).

Pitot probe measurements are unreliable. Examination of the simulation database,
assuming for now that it is at the very least qualitatively realistic, reveals that near
the jet edge there is occasionally a locally reversed flow which would in itself render
Pitot measurements inaccurate. Supporting this further, the experimentally measured
points with M . 0.3 do not appear to always follow the same trends as the rest of
the data (Stromberg et al. 1980).

At Re = 3600 the flow is expected to be laminar for a significant portion of the
potential core region. However, after transition and downstream of the potential core
we expect the mean flow to be independent of both viscosity and compressibility
and eventually spread linearly with downstream distance as any turbulent free jet
should. Experiments on high-Reynolds-number fully developed jets have shown that
the centreline velocity, Uc, decays as

Uc

Uj

= Bu

[
2ro

x− xo
]
, (3.1)

where xo is the axial coordinate of the virtual origin of the jet and the constant Bu
is approximately 5.8 (Hussein, Capp & George 1994). Figure 2(a) shows that linear
growth of r0.5, which is defined by v̄x(r0.5) = 0.5Uc, begins almost immediately after
the potential core closes in the present case. Likewise, figure 2(b) shows that (3.1) with
Bu = 5.8 and xo = 4.15ro matches the simulation data. This agreement is noteworthy
because it suggests that compressibility is negligible here, at least with regard to mean
flow development, and that our jet displays self-similar behaviour surprising early
in its development. This will facilitate comparison to incompressible jet data in the
following section. The agreement also verifies that it develops properly as a free jet
despite the artificial boundary conditions imposed in the computation.

3.2. Turbulence

Two components of the Reynolds stresses are shown in figure 3. After an initial region
of laminar flow, both components rise rapidly near the end of the potential core.
For example, v′xv′x reaches only 0.010U2

j by x = 8ro. However, by 12.5ro, the fourth

profile in figure 3(a), it has reached nearly its peak value of 0.041U2
j suggesting that
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Figure 3. Reynolds stresses normalized by nozzle exit velocity: (a) v′xv′x and (b) v′xv′r .
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Figure 4. Instantaneous contours of vorticity magnitude: levels are ωro/Uj = 0.35, 1, 2, 3, 4 with
lighter contours representing larger values. Peak vorticity magnitude (not shown) was ωro/Uj = 11.

a rapid nonlinear saturation and transition has occurred. The vorticity magnitude
visualization provided in figure 4 supports this. The other Reynolds stresses follow a
similar development.

No turbulent stresses were documented by Stromberg et al. (1980), but assuming
that experimental limitations are indeed responsible for the discrepancies in the mean
Mach number profiles at the edges of the sheared region, then it is reasonable to
assume that the shear stress is accurate in the present simulation. This, however, offers
no guarantee that a jet at this Reynolds number does indeed have the hallmarks of
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Figure 5. Second moments of velocity: e, x = 20ro; �, x = 25ro; �, x = 30ro; ———,
low-Mach-number experimental data from Panchapakesan & Lumley (1993); and −−−−,
low-Mach-number experimental data from Hussein et al. (1994). The Panchapakesan & Lum-
ley (1993) profiles were digitized and replotted from the least-squares fits in their publication; the
Hussein et al. (1994) profiles are the curve fits they provided. The simulation data were averaged in
time for the entire simulation history and in space over a streamwise band of width ∆xave = 2ro.

turbulence: Reynolds stresses that are insensitive to Reynolds number, a broad-
banded energy spectrum, rapidly decaying two-point correlations, and significant
viscous dissipation of kinetic energy.

Concerning the Reynolds stresses, we now take advantage of the apparent self-
similar behaviour discussed in the previous section and compare to incompressible
jet data in figure 5. The agreement is good for all second moments of velocity when
x & 25ro and for the shear stress when x & 20ro. The simulation data almost without
exception fall between the profiles measured by Panchapakesan & Lumley (1993)
and Hussein et al. (1994). We conclude that the post-transition Reynolds stresses are
realistically independent of viscosity.

Figure 6 shows one-dimensional axial and azimuthal turbulence energy spectra at
the nozzle lip line (r = ro). The axial spectrum (figure 6a) is indeed broad banded with
the smallest scales having 106 times less energy than the largest. Azimuthal spectra
in figure 6(b) show the downstream development of the jet turbulence. At x = 0 the
spectrum is dominated by the low azimuthal mode numbers that are explicitly excited
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Figure 7. Two-point streamwise correlations at r = ro as defined in (3.2): (a) v′x; (b) v′r .

as discussed in § 2.2. Further downstream the spectra broaden and the peak energy
component increases rapidly until x = 14ro which is near the end of the potential
core and where the vorticity magnitude visualization in figure 4 suggests that the flow
has transitioned. The spectrum does not change significantly downstream of x ≈ 16ro
(not shown). No inertial range is expected at this Reynolds number.

Axial two-point correlations defined as

v′(x)v′(ξ)

v′(x)v′(x)
(3.2)

are shown in figure 7 for x = 6ro, 10ro, 14ro, 18ro, 22ro and 26ro and v′ = v′x and
v′r . At x = 6ro, where the visualization in figure 4 suggests that the flow is laminar
with developing instability waves, the correlation is indeed wave-like, particularly for
the radial velocity component. However, at larger x the correlations decay rapidly,
indicative of turbulence. Neither integral length scale changes much past x ≈ 15ro.

Figure 8 shows the radially integrated turbulent kinetic energy production, mean
flow transport, and viscous dissipation. (The compressible terms are included in the
viscous dissipation, but they are very small at this Mach number.) All the budget
terms not shown are less than 10% of the peak production (both individually
and combined) and so are not discussed. The production, which begins to rise
near x = 6ro in the laminar region, is initially balanced by mean transport. Only after
x ≈ 13ro does viscous dissipation act as the most significant removal mechanism.
At x ≈ 18ro the mean transport becomes positive, making the dissipation the only
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significant sink. This balance corroborates the energy spectra in showing that the
dissipation scales are well resolved.

4. The far-field sound
Of great concern in jets are the pressure fluctuations that decay most slowly away

from the jet and thus constitute the far-field noise. Using a generally accepted guidance
that several wavelengths are required to reach the point where this asymptotic decay
rate becomes evident, it is clear that the 8ro radial extent of the present simulation
is too short and additional computation is required to reach the far field. Another
motivation for extending the domain is that the noise data from Stromberg et al.
(1980) are only available on an arc at 60ro, also well beyond the present Navier–Stokes
computation.

Extending the solution to the far field is straightforward since at r = 8ro the flow
is irrotational with mean Mach number less than 0.02 and disturbances are small
(p′/p̄ < 0.002). Under these conditions, a linear wave equation accurately describes
the pressure fluctuations. The details of the solution method used are described in
the Appendix. The sound field dilatation is visualized in figure 9. The sound waves
appear to emanate from roughly the end of the potential core and have an apparent
peak intensity at 30◦ from the jet axis.

The sound pressure level on an arc at 60ro from the nozzle is compared with
experimental data in figure 10. Though a little high, the present results are well within
the 3 dB uncertainty estimate provided with the Stromberg et al. (1980) data. When
comparing with the higher Reynolds number data of Mollo-Christensen, Koplin &
Martucelli (1964) and Lush (1971) in the same figure, it is clear that the lower
Reynolds number jets are more directive. It should be noted that the Lush data
are adjusted from 240ro down to 60ro and still show reasonable agreement, which
suggests that the other measurements do not have significant near-field influences. A
preliminary report on the present simulations showed essentially the same directivity
though with a smaller statistical sample (Freund 1999a) using a different scheme to
compute the far-field noise (Freund 2000).

Figure 11 compares the noise frequency spectrum at 30◦ from the jet axis with the
Stromberg et al. data. Only a relative scale was given with those data so it has been
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Figure 9. Visualization of the far-field sound: Black is Θ = ∇ · u < −0.0005ao/ro and white is
Θ > 0.0005ao/ro. The grey scale varies continuously between these extrema. The jet is visualized
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adjusted vertically in the figure. Agreement is encouraging. In both cases the peak is
near StD = 0.2 and both spectra follow a similar decay with increasing frequencies.
The peak for the present computation is somewhat sharper, but some disagreement is
not surprising since nozzle conditions of the experiment were unknown. Overall, the
ad hoc nozzle treatment used in this computation does a reasonable job at reproducing
the experimental observations. Despite the accelerated decay of both spectra at high
frequencies due to the low Reynolds number, the spectrum is continuous. It drops
from its peak of 115 dB at StD ≈ 0.2 to around 60 dB at StD = 3.0.

5. Acoustic sources
This section addresses the sources of noise in the jet. For present purposes these are

defined as in (1.1) despite the ambiguities in Lighthill’s (1952) approach concerning
flow–acoustic interactions discussed in § 1. In defining the present source, the pressure
is used as the acoustic variable as opposed to the density in Lighthill’s original
formulation, but otherwise the equations and reasoning are Lighthill’s. By exact
manipulations, the flow equations become

∂2p

∂t2
− a2

∞∆p = S, (5.1)
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where

S = a2
∞

[
∂2ρuiuj

∂xi∂xj
− ∂2τij

∂xi∂xj

]
+
∂2

∂t2
(p− a2

∞ρ) (5.2)

is the nominal acoustic source. The choice of pressure as the acoustic variable is
motivated by the fact that pressure, having a nearly uniform mean in a free shear
flow, is at times more convenient to use than the density. None of the results depend
upon this choice.
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Fourier integral methods were used to compute S and thereby provide its spectral
makeup. The Fourier integral transform of the pressure in the streamwise direction
and time and the simultaneous discrete Fourier transform in the azimuthal direction
was defined by

p̂n(k, r, ω) =

Nθ−1∑
j=0

∫ ∞
−∞

∫ ∞
−∞
p(x, r, θj , t)w(t) eiωteikxeinθj dt dx, (5.3)

with inverse

p(x, r, θj , t) =
1

4π2Nθ

Nθ/2−1∑
n=−Nθ/2

∫ ωm

−ωm

∫ km

−km
p̂n(k, r, ω) e−iωte−ikxe−inθj dω dk. (5.4)

In practice, only a finite number of wavenumbers k and frequencies ω were computed,
with integration bounds km and ωm in (5.4) set by the resolution in x and t. The infinite
bounds on the integral over x in (5.3) are of course unphysical, but in the same sense
that the mathematical model of a jet exhausting into an infinite quiescent medium is
an idealization. Downstream in experiments there are typically diffusers and settling
chambers; similarly, in the present simulation there is the zonal boundary that damps
the turbulence and noise. Because pressure fluctuations become negligible in this
boundary zone, the infinite upper bound in (5.3) will give the same result as a finite
upper bound that includes the data in the outflow boundary zone (this is shown
subsequently). Similarly, the upstream flow is laminar without significant pressure
fluctuations and so the same is true for the lower x-integration bound. Thus the
infinite x-integral in (5.3) is equivalent to a finite integral from the laminar inflow
through the boundary zone.

The infinite time-domain transform is also not well defined physically and in reality
the jet must be started and eventually stopped. While the low frequencies associated
with this are easily neglected in an experiment because the jet can be run for a
relatively very long time, a limited time history is available from the simulation so
care must be taken to avoid the introduction of spurious effects. To confine spurious
spectral contributions to very low wavenumbers, w(t) was included as a factor in the
forward transform (5.3) with the functional form

w(t) =
1

2

[
tanh

(
5
t− t1
t1 − t0

)
− tanh

(
5
tf − t
tf − t2

)]
. (5.5)

Times t0 and tf in (5.5) are respectively the time in the simulation when it was
determined to be statistically stationary and the final time and t1 and t2 are respectively
the 5% and 95% points in this time series. An example time series of pressure
perturbations p′ multiplied by w(t) is shown in figure 12. It is clear that the w(t) factor
does not significantly affect the pressure for a large region in the middle of the time
series. Since the maximum distance between two points in the computational domain
is approximately 38ro, by computational time of approximately t0 +2(t1−t0)+38ro/a∞
we expect the sound to be unaffected by the procedure outlined here.

Multiplying p by w(t) is similar to a windowing operation common in signal analysis.
However, by evaluating the integrals with a quadrature scheme with sufficiently fine
discretization (trapezoidal rule was used) rather than applying a discrete transform the
artificial periodic extension of the data beyond the available times series is effectively
eliminated. The Fourier representation of the pressure computed by (5.3) is exact
in the sense that subsequent evaluation of (5.4) reproduces the original ‘windowed’
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pressure time profile. However, artificial low frequencies are necessarily added to the
spectrum due to the truncation. Since the transform of w(t) decays reasonably slowly,
these are confined to low frequencies.

5.1. Lighthill’s equation

To verify that the techniques outlined above are capable of producing a reliable
representation of the pressure in wavenumber–frequency space, the Lighthill source
is computed in the transformed space and then used to compute the sound field.
The agreement of this prediction with that from the direct numerical simulation
will validate the transform methods and other aspects of the solution. Barring any
numerical or systematics errors, the agreement should be perfect. However, given the
expected susceptibility of aerodynamic noise computation to errors (Crighton 1993)
such a validation is important. The sound after all is over 103 time less energetic than
the flow and therefore particularly sensitive to errors.

From (5.1) and (5.3), the source in transformed space is simply

Ŝn =
∂2p̂n

∂r2
+

1

r

∂p̂n

∂r
+

[
ω2 − k2 − n2

r2

]
p̂n, (5.6)

with inverse transform S defined analogously to p in (5.4). Figure 13 shows that S is
small near the ‘nozzle’ where the flow is laminar. Levels are highest near the end of
the potential core which is approximately where the turbulence is most intense (see
figure 3). The source again becomes small by x ≈ 30ro.

Given S computed via (5.6), equation (5.1) was solved directly using the same
numerical method as the flow solver. The Lighthill and directly computed Navier–
Stokes solutions are compared on a ray in figure 14. Agreement is not perfect, but it is
indeed very good. Likely causes of the small disparity are the inexact time transform
discussed above or boundary conditions. Care was taken for both the Lighthill and
Navier–Stokes solutions to ensure that all boundary conditions were approximately
anechoic, but as in experiments this is not exact. Nevertheless, the agreement is good
enough to demonstrate that the source is well represented in (k, ω)-coordinates. An
instantaneous rather than statistical comparison was made because instantaneous
agreement is the stronger condition and statistical agreement should follow. The
curves shown in figure 14 are typical of all directions and times.

Bastin et al. (1997) claim that using the streamwise wavenumber as in (5.6) is ‘not
suitable’ for computation of the Lighthill source, but if this cannot be done it is
unclear how reliable the ω, k representation of the source would be. It is likely that
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the two-dimensional transformed source they analysed is equally reliable despite their
concerns.

5.2. Source location

Contour plots of the root-mean-squared (r.m.s.) full source and the radiating portion
(to all angles) of the source defined by†

Ŝrn(k, ω, r) =

{
Ŝn(k, ω, r) if ω > ka∞,
0 otherwise,

(5.7)

are shown in figures 15(a) and 15(b) respectively. Although the statistical convergence
for the full source is imperfect, it is nevertheless immediately obvious that the
radiating portion of the source (figure 15b) has a different character to the full source

† This filtering operation leaves a set of modes capable of radiating to the far field in r, but
it is not guaranteed to remove all non-radiating components of the Lighthill source. Additional
cancellation may occur due to the radial structure of the source which is not accounted for in this
analysis.
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(figure 15a). The filtered source (5.7) peaks on the jet axis just downstream of the end
of the potential core, whereas the full source peak extends farther away from the jet
axis into the shear layers. The full source also decreases more rapidly upstream than
does the filtered source.

The turbulent fluctuations are, of course, responsible for the noise and so the
intensity of the turbulence must be related to the source intensity. However, this
relationship is not necessarily simple as is evident in figure 15(c) where the turbulence
kinetic energy is seen also to have a distinctly different character to the radiating
portion of the Lighthill source (figure 15b). The turbulent kinetic energy is evidently
more similar to the full source than the radiating source defined by (5.7). It is plainly
peaked within the shear layer, well upstream of the radiating source peak. Given this
result, one must be extremely careful when making estimates of the source location
or intensity based on the turbulent kinetic energy or similar quantities.

Though useful in showing the intensity of the radiating source, the data presented
in figure 15(b) do not explicitly show where the bulk of the noise appears to come
from because the volume of the acoustic sources is not taken into account. For
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example, the contribution from very near r = 0 is negligible. To present a clearer
picture of the volume-weighted contribution to the noise, r.m.s. Sr is multiplied by r
and replotted in figure 15(d). Because the region around r ≈ ro has potentially the
greatest contribution to the far-field sound by this crude measure, this region will be
studied in the greatest detail for the remainder of the paper.

The distribution of the sources computed here is not expected to be universal
because the location of the sources is likely to depend to some degree upon the
Reynolds number. As far as the present flow is concerned, decreased viscosity would
tend to make the initial shear layers turbulent which would increase the acoustic
radiation from that portion of the flow. However, the observation that the peak of
the radiating portion of the source may occupy a different region in space than the
peak of the turbulent kinetic energy has important consequences when modelling jet
noise in general.

5.3. Convection of the acoustic sources

The convection of the acoustic sources is very important, a fact that has been well
understood since the pioneering work of Lighthill (1952). Its importance lies in its
being the primary cause for the source to fluctuate in time when observed from a
stationary frame of reference, but the fluctuations leading to noise radiation constitute
only a portion of these. Crighton (1975) provides a particularly lucid summary of
earlier efforts analysing the role of source convection (Lighthill 1952, 1963; Ffowcs
Williams 1963; Mani 1974). He shows that apparent fluctuations in time caused solely
by the subsonic convection of unchanging sources do not radiate noise. Instead it is
the change of the eddie sources as they convect that is responsible for the radiated
sound.

To understand how S structures convect, it is instructive to first visualize S in an
(x, t)-plane as is done in figure 16 for r = ro and θ = 0. There are several notable
features in this plot. First, it is immediatly evident that at this radial location there
exists a prefered convection velocity which is approximately 0.6Uj as is commonly
observed for turbulence in jet shear layers (this is treated more quantitatively below).
It is also evident that the sources are both stronger and more organized before the
potential core closes at around x = 14ro. This is in accord with the fact that large
organized coherent structures are more commonly observed in the shear layer portion
of jets than in the transition or fully developed downstream regions, but may be
in part an artifact of the low Reynolds number. Interestingly, downstream of the
potential core the sources visualized in the figure (for the threshold values used)
are still oriented at roughly the same angle despite the fact that the mean flow has
decreased (see figure 1 and figure 23). Sources with |S | > 0.5ρjU

2
j /r

2
o are, however,

more intermittent and less regular in this region. In the neighbourhood of the end of
the potential core, the sources are both strong and rapidly changing (the patterns in
the (x, t)-plane are far less regular here than in the shear layers). According to the
reasoning of Crighton (1975) and others discussed above, this is therefore where most
of the far-field sound should arise, which appears to be the case in figure 9.

These notions are better quantified in terms of the phase-velocity makeup of the
source. Figure 17 shows

S(k, ω) =
1

Nθ

Nθ∑
n=0

∫ 8ro

0

|Ŝn(k, ω, r)|r dr (5.8)

which is a volume-averaged source for the whole of the computed jet. Because the
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statistical sample size available from the simulation data is small it was necessary to
smooth the data significantly to construct intelligible contour lines in the (k, ω)-plane.
Also, it was found that the ‘windowing’ procedure discussed in the introduction to
this section contaminated Ŝn in regions of the (k, ω)-plane where |ω| < 0.05|k|a∞
(regions that do not radiate noise). For presentation purposes, the contours here were
reconstructed by extrapolating from the uncontaminated regions. For these reasons
the details in figure 17 should only be interpreted qualitatively, though the general
shape of the contours is reliable.

Not surprisingly, the strongest sources fall into a region where |ω/a∞k| . 0.6Uj/a∞
(Mc < 0.5, where Mc is the convection speed divided by the ambient speed of
sound) verifying that the convection speed of sources does not much exceed half
the jet velocity. In this sense, figure 17 is similar to a prediction make by Ffowcs
Williams (1963). However, here the mean phase velocity of the source appears to
be approximately 0.36Uj , or Mc = 0.3, which is lower than the 0.6Uj speculated by
Ffowcs Williams. A potential factor contributing to this difference is that regions
downstream of the shear layer, where the convection velocity of structures is expected
to be a good deal smaller than Uc ≈ 0.6Uj as typically observed in the shear layer
regions, are included in S . This is accentuated by the fact that the present shear layers
are for the most part laminar and therefore will not make significant contributions
to S . Nevertheless, a wide range of convection velocities are observed which has
implications for directivity models that use Doppler factors (1 −Mc cos α)−n with a
single convection velocity (Ffowcs Williams 1963; Lighthill 1952; Goldstein 1991).



296 J. B. Freund

8

4

0

–4

–8
–12 –8 –4 0 4 8 12

kro

Mc = 0.05

Mc = 0.3

Mc = 0.5

M c
 =

 –1
M
c  = 1

xro
a∞

Figure 17. The acoustic sources in frequency–wavenumber space. The contours level indicates the
relative contribution of (5.8) for particular k, ω pairs, but this result is meant to be interpreted
qualitatively (see text).

Figure 17 is also similar to a plot made of sources in a two-dimensional unsteady
Reynolds-averaged simulation by Bastin et al. (1997), but the sources in that study
are more confined to the |ω/a∞k| ≈ 0.6Uj line, which is probably a consequence of
only computing the largest two-dimensional structures.

The bulk of this integrated acoustic source does not satisfy the condition that
|ω/k| > a∞ which is necessary for acoustic radiation to the far field in r. Nearly all of
it will only spawn evanescent pressure waves which become negligible within a few
wavelengths from the jet.

Figure 18 shows quantitatively the axial spectrum of four individual frequen-
cies. Here the spectra were averaged in narrow bands (ω = ±0.02) around the
given frequency. The symmetry apparent in figure 17 was also used to converge the
spectral statistics and the contributions from all azimuthal modes are included. At
ω = 0.5a∞/ro, the spectral peak is close to the region capable of radiating to the
far field (demarked in the figure by the straight vertical lines). As the frequencies
considered increase (figure 18b–d), the spectral peaks move to higher (more negative)
wavenumbers and levels fall more before the radiating |ka∞| < |ω| region.

5.4. Filtering non-radiating source components

The objective of this section is to better characterize the portion of the acoustic
sources that radiates to the far field in r. This is undertaken by filtering non-radiating
components of S by

Ŝfn(k, ω, r; kc) =

{
Ŝn(k, ω, r) if k < kc,
0 otherwise,

(5.9)

where kc is a cut-off wavenumber. For kc > ω/a∞, there should be no effect of this
filtering procedure on the far-field sound.

Results are clearest if Ŝfn is analysed in physical coordinates at a single discrete
frequency and azimuthal mode number. This is done by inverse transforming to find
the real space (function of x) component of a single frequency, designated ωo, and
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azimuthal wavenumber, designated no:

Sf(x, r, θ, t) =
e−iωote−inoθ

4π2Nθ

∫ ∞
−∞
Ŝfno (k, ωo, r) e−ikx dk. (5.10)

Thus Sf depends on all space coordinates and time, but the θ and t dependence
is trivial. The peak frequency of the radiation is at approximately ωo = 0.5a∞/ro,
which corresponds to a Strouhal number of StD ≈ 0.2, and so makes this frequency
particularly important. All significant frequencies in the far-field sound show similar
results when the corresponding sources are analysed. Azimuthal mode no = 0 was
picked for this illustration but the results are similar for all small n. Taking kc = 5/ro
in (5.9), transforming this single frequency of the source to physical coordinates,
arbitrarily choosing t = 0 and θ = 0 in (5.10), and picking r = ro leads to the curve
shown in figure 19(a). As expected from the visualized source in figure 13, Sf rises
from zero in the laminar region near x = 0 to a peak near the end of the potential
core and then falls again toward zero by the right-hand side of the physical domain
(at x = 30ro). The curve is extended into the buffer zone of the computation where
artificial filtering forces all fluctuations to zero. The implications of doing this were
discussed in the introduction to this section on sources.

No clear structure is evident in figure 19(a), which is not surprising as it is an
instantaneous trace in a turbulent flow, but it also shows a significantly broader range
of streamwise wavenumbers than are capable of radiating noise to the far field at
this frequency. These are filtered away in steps in figure 19(b–d) by decreasing kc in
(5.9). Additional filtering will result in a loss of the approximately compact support
the profiles have in figure 19(a–d) and the connection to the physical structures in
the jet would therefore be lost if the filtering procedure were carried further. It is
clear that retaining only k < 2/ro gives a very simple form for the source (figure
19d), and it is worth reminding the reader at this point that all source components
capable of radiating to the far field have been retained. The form in figure 19(d)
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was also observed by Colonius et al. (1997) in a detailed study of a two-dimensional
compressible mixing layer. Though it was not possible to measure the Lighthill source
experimentally, Laufer & Yen (1983) found evidence of such organization in the early
development of a weakly forced jet shear layer. Here for the first time it has been
explicitly shown that upon filtering of the source data the Lighthill source has this
form even past the end of the potential core in a turbulent jet.

Because the curve in figure 19(d) has the appearance of a growing and decaying
instability wave, one might question whether or not it is an artifact of the low
Reynolds number of the turbulence and merely an extension of the instability wave
in the initially laminar shear layers. The evidence supporting realistic turbulence
presented in § 3.2, in particular the rapidly decaying two-point correlations, suggests
that this is not the case. In addition, a similar modulated wave form was educed
by Arndt, Long & Glauser (1997) using a proper orthogonal decomposition of the
near-field pressure fluctuations of a Reynolds number 4× 104 jet. Though near-field
pressure fluctuations are different to the Lighthill source, their results suggest that the
observed form may persist at much higher Reynolds numbers than can be simulated.

5.5. Sound from individual modes

Crighton & Huerre (1990) studied model noise sources of the form seen in figure 19(d)
and showed their noise intensity, I , to be what has come to be called superdirective,

I ∼ exp [A cos α], (5.11)

where A is a constant. This form is in general agreement with the forced jet experiments
of Laufer & Yen (1983). The noise from the single frequency and single θ-mode of the
source plotted in figure 19(d) is visualized in figure 20. It is clearly very directional, but
decays at small angles from the jet axis counter to (5.11) possibly because of refraction
or the geometrical limitation of the finite Navier–Stokes computational domain. The
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grey line is ∼ exp [25 cos α], and the thin grey line is ∼ (1−Mc cos α)−5.

sound pressure level directivity for this and two higher frequencies are shown in figure
21. None of these is well fitted in detail by (5.11), but the 20 dB drop between α ≈ 30◦
and α ≈ 50◦ would correspond roughly to A = 25 in (5.11). This curve is included on
the plot for reference, as is the (1 −Mc cos α)−5 estimate for convected quadrupoles
(Ffowcs Williams 1963) with Mc = 0.5. Clearly the decay rate at small angles is faster
than the convected quadrapole model would predict, but there is also an insufficient
range of rapid decay to precisely determine its functional form. The form of the
source suggests that it could indeed be exponential. The statistical sample is also
insufficient to converge the directivity at larger angles from the jet, but the general
trend here is closer to the slope of the (1 −Mc cos α)−5 curve. Because of the rapid
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S(xo, to)S(xo + ∆x, to + ∆t)/S(xo, to)S(xo, to) where S is: (a) the full acoustic source from (5.6);
(b) the radiating source (to all angles) from (5.12); and (c) the source that radiates to angles α > 45◦
and α < 135◦. Contours show the 0.1 to 0.9 correlation isolevels (———) and the −0.1 isolevel
(−−−−). The · · · · · · contour in (a) is the 0.15 correlation isolevel. Straight lines show various
convection velocities.

decay with angle, it is understandable that the sound from the low wavenumbers of
the wave-packet envelope might be overwhelmed by other components at larger α.

5.6. Source correlations and acoustic compactness

At Mach 0.9 we do not expect the source to be acoustically compact, but under-
standing the degree to which it is non-compact is important for extension of low
Mach number theory to near sonic conditions. Space–time and two-point correlations
can provide a length scale for estimating source compactness (relative to the noise
wavelength). Based upon figure 19, it is clear that at a single frequency the radiating
source is on the scale of the whole jet. Although the distance over which individual
modes remain correlated is evidently quite large (figure 19), the statistical correlation
of the full source has also been used at times to estimate the source size. For exam-
ple, an acoustically compact correlation length is an assumption made in developing
the Lighthill/Ffowcs Williams convected quadrupole model. The compactness of the
sources responsible for different portions of the directivity curve can be ascertained
by extending the definition of (5.7) to filter the portion of the acoustic sources that is
responsible for radiation above a certain angle α

Ŝαn(k, r, ω; α) =

{
Ŝn(k, r, ω) if |ka∞/ω| < cos α,

0 otherwise.
(5.12)
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Figure 23. The mean Mach number at r = ro with respect to the ambient speed of sound.

The space–time correlation of S(x, t), the full source from (5.6) including all frequencies
and azimuthal modes, is shown in figure 22(a) and the space–time correlations of
Sα, the inverse transform of Ŝαn in (5.12), with α = 0◦ and 45◦ are shown in figures
22(b) and 22(c). Evidently the full source (figure 22a) is dominated by relatively small
scales that convect with the flow. This is consistent with the visualization in figure 13.
Only the correlations at r = ro and x = 20ro are shown, but these are typical for all
positions in the turbulent flow (taking into account changes in the mean flow velocity
as a function of position). The local convection Mach number of sources estimated
from the slope of the straight line in the figure is Mc = Uc/a∞ = 0.46 which roughly
agrees with the value for the mean Mach number (figure 23) to within the accuracy
of this estimation procedure. Close inspection of figure 22(a) also reveals a slight
deceleration of the sources as they convect. Between ∆ta∞/ro = 1 and 2, the peak
correlation at a given time no longer falls on the line corresponding to Mc = 0.46, but
instead Mc = 0.34 appears to be a better fit with presumably a continuous deceleration
between these estimates and beyond. The apparent deceleration is more rapid than the
mean flow deceleration seen in figure 23. The reason for this discrepancy is unclear.
However, it is not surprising that there is some decrease given the decrease of the
mean.

In figure 22(b), it is apparent that the radiating (to all angles) component of the
source is correlated over a much greater distance in the axial direction than was the
full source, with `x ≈ 4ro giving the 20% correlation distance. Dominant frequencies
for the acoustic radiation are primarily in the range 0.2 . StD . 0.5, so typical
wavelengths are such that 5ro < λ < 12ro. Thus, the source does not satisfy a λ � `
compactness condition. Higher frequency sources would be relatively less compact by
the measure we have used, but the present data have insufficient statistical sample size
to perform such an analysis reliably at individual frequencies. In figure 22(b) there is
an apparent component of the source that convects with a near-sonic velocity, though
this does not necessarily imply that turbulent eddies themselves convect at this speed.

Considering only components of the source that radiate at angles α > 45◦ (fig-
ure 22c), we see that this portion of the source is even more correlated in the
streamwise directions, with the 20% x-correlation distance now `x ≈ 7ro. There is
potentially a slight bias in the correlation along a line that would represent Mc ≈

√
2

(α = 45◦), but this is minor, and for α > 45◦ the radiating portion of the source
appears to be nearly stationary. The time over which the source remains correlated
does not increase as the source is filtered.

Both the full source and the two filtered sources considered above are compact in
the radial direction as shown in figure 24. Again only correlations at x = 20ro and
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Figure 24. Radial correlation of the acoustic source at x = 20ro, r = ro.

r = ro are shown but these are typical of elsewhere in the jet. An implication of this is
that each radial location in the jet radiates independently which in turn implies that
the sound radiated from r = 0 would be refracted more than sound emitted near the
edge of the jet flow. A single correction for refraction effects might therefore be an
oversimplification.

6. Summary
This paper reports on a successful computation of subsonic turbulent jet noise from

first principles. The results show excellent agreement with the experimental data of
Stromberg et al. (1980) for both the mean flow development and the radiated sound.
Computed Reynolds stresses are similar to those measured in similar jets, though
the simulation jet is by necessity of low Reynolds number, which leads to several
well-known differences from high Reynolds number jets. Despite this, visualizations
show that the jet appears to be turbulent before the end of the potential core, which
is supported by spectra, two-point velocity correlations, and the budget of turbulent
kinetic energy.

For the first time the Lighthill source in a jet, which has been modelled by various
methods in the past, was computed by Fourier methods to isolate the portion of the
source that may radiate to the far field. To validate the implementation, it was shown
that the sound could be accurately computed by solving Lighthill’s equation. The
source was then analysed in detail. It was first observed that the radiating portion of
the source was largest in a different region of the jet than the peak intensity of the full
source. Likewise, the mean turbulent kinetic energy and the mean radiating source
were not well correlated. Filtering non-radiating modes from the source revealed that
even in this turbulent flow the radiating portion of the source was roughly similar to
that observed in laminar mixing layers (Colonius et al. 1997) or as might be predicted
by linear stability analysis. The noise from these individual modes was analysed
and found to be highly directional, much more so than typical Doppler factors
would indicate. The acoustic compactness of the source was studied with space–time
correlations that showed that its radiating component was not acoustically compact
in the streamwise direction. The non-compactness was found to be more pronounced
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for the portion of the source that radiated sound at larger angles from the jet axis.
Space–time correlations also suggested that this portion of the source was stationary.

The author thanks Professor Tim Colonius for many helpful discussions and
comments on this work, particularly with regard to filtering the acoustic sources,
and Professor Thomas Bewley for his detailed comments on a draft of this paper. A
portion of the simulation framework for this effort was developed by the author while
a student of Professor Sanjiva Lele and Professor Parviz Moin at Stanford University.
Financial support from NASA is gratefully acknowledged.

Appendix. Computing the sound beyond the flow computation
A short distance from the jet the flow is irrotational and has a negligible mean Mach

number so low-amplitude (linear) pressure disturbances are accurately described by
the homogeneous wave equation,

ptt − a2
∞∆p = 0. (A 1)

Since the transformed pressure, p̂n(k, r, ω), is available from our source computations
in § 5, it is straightforward to incorporate (A 1) into a boundary value formulation
with p̂n(k, r, ω) given on a cylindrical shell at r = R, which is within the physical
portion of the Navier–Stokes computation but beyond the jet flow itself. Applying
(5.3) to (A 1) gives

d2p̂n

dr2
+

1

r

dp̂n
dr

+

[
ω2 − k2 − n2

r2

]
p̂n = 0. (A 2)

A radiation condition at r →∞ restricts the solution to be

p̂n(k, r, ω) =

{
p̂n(k, R, ω)H (1)

n (r
√
ω2 − k2)/H (1)

n (R
√
ω2 − k2) if ω > 0,

p̂n(k, R, ω)H (2)
n (r
√
ω2 − k2)/H (2)

n (R
√
ω2 − k2) if ω < 0,

(A 3)

where H (1)
n and H (2)

n are Hankel functions of the first and second kind respectively.
Inverse transforming using (5.4) gives p(x, r, θ, t) in r > R. Only modes with ω > k
radiate, so other modes are neglected in this study.
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